• Suhani, I., Sahab, S., Srivastava, V. & Singh, RP Impact of cadmium pollution on food safety and human health. Running. Opinion. Toxicol. 271–7 (2021).

    Google Scholar

  • Song, y. et al. Assessment of dietary exposure to cadmium among the Chinese population. PLOS ONE 12e0177978 (2017).

    PubMed PubMed Central Google Scholar

  • Najafi, D., Taheri, RA, Najafi, A., Shamsollahi, M., and Alvarez-Rodriguez, M. Effect of astaxanthin nanoparticles on post-thaw quality protection of rooster semen challenged by administration of cadmium. Chicken. Science. 991678-1686 (2020).

    CAS PubMed PubMed Central Google Scholar

  • Augustyniak, M. et al. DNA damage in Spodoptera exigua after multigenerational exposure to cadmium-A trade-off between genome stability and adaptation. Science. About. 745141048 (2020).

    CAS PubMed Google Scholar

  • Yuan, W., Yang, N. & Li, X. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer. Biomedical. Res. Int. ten7825432 (2016).

    Google Scholar

  • Klatt, P. & Lamas, S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. EUR. J. Biochem. 2674928–4944 (2000).

    CAS PubMed Google Scholar

  • Chen, L., Liu, L. & Huang, S. Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatase 2A and 5. Free. Radic. Organic. Med. 451035-1044 (2008).

    CAS Google Scholar

  • Oswald, M., Brooks, PS, Zwart, MF, Mukherjee, A. & Landgraf, M. Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila. Elife 7e39393 (2018).

    PubMed PubMed Central Google Scholar

  • Wang, J. et al. Cadmium induces apoptosis in freshwater crab Sinopotamon henanense by activating the calcium signal transduction pathway. PLOS ONE tene0144392 (2015).

    PubMed PubMed Central Google Scholar

  • Pappus, SA and Mishra, MA Drosophila model for deciphering the toxicity of nanoparticles taken orally. Adv. Exp. Med. Biol. 1048311-322 (2018).

    CAS PubMed Google Scholar

  • Guntur, AR, Venkatanarayan, A., Gangula, S. & Lundell, MJ Zfh-2 facilitates Notch-induced apoptosis in the CNS and appendages of Drosophila melanogaster. Dev. Biol. 47565–79 (2021).

    CAS PubMed Google Scholar

  • Kulshammer, E. et al. Interaction between Drosophila the transcription factors Ets21c, Fos, and Ftz-F1 drive JNK-mediated tumor malignancy. Say. Mechanical model. 81279-1293 (2015).

    PubMed PubMed Central Google Scholar

  • Zhang, Y., Wolosker, MB, Zhao, Y., Ren, H., and Lemos, B. Exposure to microplastics causes intestinal damage, locomotor dysfunction, epigenetic silencing, and worsens cadmium (Cd) toxicity in Drosophila. Science. About. 744140979 (2020).

    CAS PubMed PubMed Central Google Scholar

  • You, L. et al. Effects of long-term exposure to cadmium on trehalose metabolism, growth and development of Aedes albopictus (Diptera: Culicidae). Ecotoxicol. About. Saf. 204111034 (2020).

    CAS PubMed Google Scholar

  • Miti, ZS et al. Comparative study of the essential oils of four Pines species: chemical composition, antimicrobial and larvicidal activity against insects. Ind. Culture. production 11155–62 (2018).

    Google Scholar

  • Sabat, D., Patnaik, A., Ekka, B., Dash, P. & Mishra, M. Titanium nanoparticle investigation of the behavior and mechanosensory organ of Drosophila melanogaster. Physiol. Behviour 16776–85 (2016).

    CAS PubMed Google Scholar

  • Fatima, A. et al. Effect of tangerine against cyclophosphamide-induced toxicity in transgenic larvae Drosophila melanogastuh (hsp70-lacZ) BG9. J. Diet Suppl. 15893–909 (2018).

    CAS Google Scholar

  • Hutson, RL, Thompson, RL, Bantel, AP & Tessier, CR Acamprosate rescues neuronal defects in the Drosophila model of fragile X syndrome. Life Sci. 19565–70 (2018).

    CAS PubMed Google Scholar

  • Khatun, S., Mandi, M., Rajak, P. & Roy, S. ROS interaction and pattern of behavior in exposed fluoride Drosophila melanogaster. Chemosphere 209220-231 (2018).

    CAS PubMed Google Scholar

  • Anet, A., Olakkaran, S., Purayil, AK, and Puttaswamygowda, GH Bisphenol A induced oxidative stress-mediated genotoxicity in Drosophila melanogaster. J. Hazard. Mater. 37042–53 (2019).

    CAS PubMed Google Scholar

  • Terhzaz, S., Cabrero, P., Chintapalli, VR, Davies, SA & Dow, JAT Mislocalization of mitochondria and compromised renal function and resistance to oxidative stress in Drosophila Mutants SesB. Physiol. Genomics 4133–41 (2010).

    CAS PubMed Google Scholar

  • Xin, F. et al. Bisphenol A induces DNA damage associated with oxidative stress in INS-1 cells. Mutat. Res. Broom. Toxicol. About. Mutagen. 76929-33 (2014).

    CAS PubMed Google Scholar

  • Valko, M., Morris, H. & Cronin, MTD Metals, toxicity and oxidative stress. Running. Med. Chem. 121161-1208 (2005).

    CAS PubMed Google Scholar

  • Liu, Z. et al. Oxidative stress caused by lead (Pb) induces iron deficiency in Drosophila melanogaster. Chemosphere 243125428 (2020).

    CAS Google Scholar

  • Priyadarsini, S. et al. Oral administration of graphene oxide nanosheets induces oxidative stress, genotoxicity and behavioral teratogenicity in Drosophila melanogaster. About. Science. Pollution. Res. 2619560–19574 (2019).

    CAS Google Scholar

  • Zhang, Y.Q. et al. Stress-sensitive B encodes an adenine nucleotide translocase in Drosophila melanogaster. Genetic 153891–903 (1999).

    CAS PubMed PubMed Central Google Scholar

  • DeVorkin, L. et al. the Drosophila the effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB. J. Cell Biol. 205477–492 (2014).

    CAS PubMed PubMed Central Google Scholar

  • Mootha, V.K. et al. A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c. Embo. J 20661–671 (2001).

    CAS PubMed PubMed Central Google Scholar

  • Miwa, S., St-Pierre, J., Partridge, L. & Brand, MD Production of superoxide and hydrogen peroxide by Drosophila mitochondria. Free radical. Organic. Med. 35938–948 (2003).

    CAS Google Scholar

  • Rosay, P. et al. Cell-type specific calcium signaling in a Drosophila epithelium. J. Cell Sci. 1101683–1692 (1997).

    CAS PubMed Google Scholar

  • Palladino, MJ, Hadley, TJ & Ganetzky, B. Paralytic temperature-sensitive mutants are enriched for those that cause neurodegeneration in Drosophila. Genetic 1611197-1208 (2002).

    PubMed PubMed Central Google Scholar

  • Sevryukov, EA et al. Drosophila Bcl-2 proteins participate in stress-induced apoptosis, but are not required for normal development. Genesis 45184-193 (2007).

    CAS PubMed Google Scholar

  • Ahmad, V., Vadla, GP & Chabu, CY Syd/JIP3 control tissue size by regulating turnover of Diap1 protein downstream of Yorkie/YAP. Dev. Biol. 46937–45 (2021).

    CAS PubMed Google Scholar

  • Clavier, A., Ruby, V., Rincheval-Arnold, A., Mignotte, B. & Guenal, I. Drosophila retinoblastoma protein, Rbf1, induces Debcl and Drp1-dependent mitochondrial apoptosis. J. Cell Sci. 1283239–3249 (2015).

    CAS PubMed Google Scholar

  • M’Angale, PG and Staveley, BE Bcl-2 the Debcl homolog enhances α-synuclein-induced phenotypes in Drosophila. PeerJ. 4e2461 (2016).

    PubMed PubMed Central Google Scholar

  • Colussi, Pennsylvania et al. Debcl, a pro-apoptotic bcl-2 counterpart, is a component of the Drosophila melanogaster cell death machinery. J. Cell Biol. 148703–714 (2000).

    CAS PubMed PubMed Central Google Scholar

  • Thomas, MP & Lieberman, J. Live or let die: post-transcriptional gene regulation in cell stress and cell death. Immunol. Tower. 253237-252 (2013).

    Google Scholar PubMed

  • Marcel, V. et al. Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell death differs. 181815–1824 (2011).

    CAS PubMed PubMed Central Google Scholar

  • Zhou, L. et al. Cooperative functions of defective mower and head involution genes in programmed cell death of Drosophila middle cells of the central nervous system. proc. Natl. Acad. Science. 945131–5136 (1997).

    CAS PubMed PubMed Central Google Scholar

  • Hu, XY et al. Effects of cadmium on fertility and the defense capacity of Drosophila melanogaster. Ecotoxicol. About. Saf. 171871–877 (2019).

    CAS PubMed Google Scholar

  • Mou, Y. et al. The effects of cadmium on the development of Drosophila and its effects of transgenerational inheritance. Toxicology 462152931 (2021).

    CAS PubMed Google Scholar