• 1.

    IPCC Climate change 2014: Synthesis report (eds Core Writing Team, Pachauri, RK & Meyer, LA) (IPCC, 2014).

  • 2.

    IPCC Special report on global warming of 1.5° C (eds Masson-Delmotte, V. et al.) (OMM, 2018).

  • 3.

    Socolow, R. et al. Direct capture of CO in the air2 With chemicals: a technology assessment for the APS group on public affairs (American Society of Physics, 2011).

  • 4.

    Minx, JC et al. Negative Emissions — Part 1: Research Landscape and Synthesis. About. Res. Lett. 13, 63001 (2018).

    Google Scholar article

  • 5.

    Hanna, R., Abdulla, A., Xu, Y. & Victor, DG Emergency deployment of direct air capture in response to the climate crisis. Nat. Common. 12, 368 (2021).

    Google Scholar article

  • 6.

    IPCC Special report on carbon dioxide capture and storage (eds Metz, B. et al.) (Cambridge Univ. Press, 2005).

  • 7.

    Wang, T., Lackner, KS & Wright, A. Moisture-varying absorbent for capturing carbon dioxide from ambient air. About. Sci. Technol. 45, 6670-6675 (2011).

    Google Scholar article

  • 8.

    Marcucci, A., Kypreos, S. & Panos, E. The road to achieving the long-term Paris objectives: energy transition and the role of direct air capture. Climate change 144, 181-193 (2017).

    Google Scholar article

  • 9.

    Viebahn, P., Scholz, A. & Zelt, O. The potential role of direct air capture in the German energy research agenda – results of a multidimensional analysis. Energies 12, 3443 (2019).

    Google Scholar article

  • ten.

    Fasihi, M., Efimova, O. & Breyer, C. Technico-economic evaluation of CO2 direct air collection installations. J. Clean. Prod. 224, 957-980 (2019).

    Google Scholar article

  • 11.

    Sanz-Pérez, ES, Murdock, CR, Didas, SA & Jones, CW Direct CO capture2 ambient air. Chem. Tower. 116, 11840–11876 (2016).

    Google Scholar article

  • 12.

    Salmón, I., Cambier, N. & Luis, P. CO2 capture by alkaline solution for the production of carbonate: comparison between a packed column and a membrane contactor. Appl. Sci. 8, 996 (2018).

    Google Scholar article

  • 13.

    Maison, KZ et al. Economic and energy analysis of CO capture2 ambient air. Proc. Natl Acad. Sci. United States 108, 20428-20433 (2011).

    Google Scholar article

  • 14.

    Fuhrman, J. et al. Food-energy-water implications of negative emission technologies in the + 1.5 ° C future. Nat. Clim. Switch ten, 920-927 (2020).

    Google Scholar article

  • 15.

    Keith, DW, Holmes, G., St. Angelo, D. & Heidel, K. A CO capture process2 of the atmosphere. Joule 2, 1573-1594 (2018).

    Google Scholar article

  • 16.

    Realmonte, G. et al. The answer to “The high energy and material requirements for direct air capture require further analysis and R&D.” Nat. Common. 11, 3286 (2020).

    Google Scholar article

  • 17.

    Chatterjee, S. & Huang, K.-W. Unrealistic need for energy and materials for direct air capture in deep attenuation pathways. Nat. Common. 11, 3287 (2020).

    Google Scholar article

  • 18.

    de Jonge, MM, Daemen, J., Loriaux, JM, Steinmann, ZJ & Huijbregts, MA Life cycle carbon efficiency of direct air capture systems with strong hydroxide absorbents. Int. J. Greenh. Gas control 80, 25-31 (2019).

    Google Scholar article

  • 19.

    Liu, CM, Sandhu, NK, McCoy, ST & Bergerson, JA A Life Cycle Assessment of Greenhouse Gas Emissions from Direct Air Capture and Fischer-Tropsch Fuel Production. To support. Energy fuels 4, 3129–3142 (2020).

    Google Scholar article

  • 20.

    Deutz, S. & Bardow, A. Life cycle evaluation of an industrial direct air capture process based on temperature-vacuum modulated adsorption. Nat. Energy 6, 203-213 (2021).

    Google Scholar article

  • 21.

    Budinis, S. Direct air capture (International Energy Agency, 2020).

  • 22.

    Negative emission technologies and reliable sequestration: a research program (Press of the national academies, 2019); https://doi.org/10.17226/25259

  • 23.

    Hertwich, EG et al. Integrated life cycle assessment of electricity supply scenarios confirms the global environmental advantage of low carbon technologies. Proc. Natl Acad. Sci. United States 112, 6277-6282 (2015).

    Google Scholar article

  • 24.

    McQueen, N. et al. Cost analysis of direct air capture and sequestration coupled with low carbon thermal energy in the United States. About. Sci. Technol. 54, 7542-7551 (2020).

    Google Scholar article

  • 25.

    Bahar, H. & Bojek, P. Concentrated solar energy (CSP) (International Energy Agency, 2020).

  • 26.

    Sandalow, D., Friedmann, J., McCormick, C. & McCoy, S. Direct capture of carbon dioxide from the air (Innovation for Cool Earth Forum, 2018).

  • 27.

    Baciocchi, R., Storti, G. & Mazzotti, M. Process design and energy requirements for capturing carbon dioxide from the air. Chem. Ing. To treat. 45, 1047-1058 (2006).

    Google Scholar article

  • 28.

    Singh, B., Strømman, AH & Hertwich, EG Comparative assessment of the impact of the CSC portfolio: a life cycle perspective. Energy Procedia 4, 2486-2493 (2011).

    Google Scholar article

  • 29.

    Hanssen, SV et al. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Switch ten, 1023-1029 (2020).

    Google Scholar article

  • 30.

    Querini, F., Dagostino, S., Morel, S. & Rousseaux, P. Greenhouse gas emissions from electric vehicles associated with wind and photovoltaic electricity. Energy Procedia 20, 391-401 (2012).

    Google Scholar article

  • 31.

    Kätelhön, A., Meys, R., Deutz, S., Suh, S. & Bardow, A. Climate change mitigation potential of carbon capture and use in the chemical industry. Proc. Natl Acad. Sci. United States 116, 11187–11194 (2019).

    Google Scholar article

  • 32.

    Gibon, T., Arvesen, A. & Hertwich, EG Life cycle assessment demonstrates environmental co-benefits and tradeoffs of low carbon electricity supply options. Renew. Support Energy Rev. 76, 1283-1290 (2017).

    Google Scholar article

  • 33.

    Particle emissions excluding road transport exhaust: an ignored environmental policy challenge (Organization for Economic Co-operation and Development, 2020).

  • 34.

    Heck, V., Gerten, D., Lucht, W. & Popp, A. Negative biomass emissions difficult to reconcile with planetary limits. Nat. Clim. Switch 8, 151-155 (2018).

    Google Scholar article

  • 35.

    Creutzig, F. et al. Consider sustainability thresholds for BECCS in IPCC and biodiversity assessments. Glob. Change Biol. Bioenergy 13, 510-515 (2021).

    Google Scholar article

  • 36.

    Gabrielli, P., Gazzani, M. & Mazzotti, M. The role of carbon capture and use, carbon capture and storage and biomass to enable net-zero-CO2 chemical industry emissions. Ind. Ing. Chem. Res. 59, 7033-7045 (2020).

    Google Scholar article

  • 37.

    Davis, SJ et al. Net zero emission energy systems. Science https://doi.org/10.1126/science.aas9793 (2018).

  • 38.

    Carton, W., Lund, JF & Dooley, K. Canceling equivalence: rethinking carbon accounting for simple carbon elimination. Before. Clim. https://doi.org/10.3389/fclim.2021.664130 (2021).

  • 39.

    Kearns, J. et al. Develop a coherent database for regional geological CO2 storage capacity worldwide. Energy Procedia 114, 4697–4709 (2017).

    Google Scholar article

  • 40.

    Arvidsson, R. et al. Environmental assessment of emerging technologies: recommendations for a prospective LCA. J. Ind. School. 22, 1286-1294 (2018).

    Google Scholar article

  • 41.

    ISO 14044: 2006 Umweltmanagement — Ökobilanz — Anforderungen und Anleitungen (International Organization for Standardization, 2006).

  • 42.

    ISO 14040: 2006 Umweltmanagement — Ökobilanz — Grundsätze und Rahmenbedingungen (International Organization for Standardization, 2006).

  • 43.

    Direct air capture to help reverse climate change. Climeworks https://www.climeworks.com/page/co2-removal (2020).

  • 44.

    von der Assen, N., Voll, P., Peters, M. & Bardow, A. Life cycle analysis of CO2 capture and use: a tutorial review. Chem. Soc. Tower. 43, 7982-7994 (2014).

    Google Scholar article

  • 45.

    Hauschild, MZ et al. Identify existing best practices for characterization modeling in life cycle impact assessment. Int. J. Life cycle assessment. 18, 683-697 (2013).

    Google Scholar article

  • 46.

    Holmes, G. et al. Results of the outdoor prototype for the direct atmospheric capture of carbon dioxide. Energy Procedia 37, 6079-6095 (2013).

    Google Scholar article

  • 47.

    Pehnt, M. & Henkel, J. Life cycle assessment of carbon dioxide capture and storage of lignite-fired power plants. Int. J. Greenh. Gas control 3, 49-66 (2009).

    Google Scholar article

  • 48.

    Steubing, B., Wernet, G., Reinhard, J., Bauer, C. & Moreno-Ruiz, E. The ecoinvent version 3 database (part II): analysis of LCA results and comparison with the version 2. Int. J. Life cycle assessment. 21, 1269-1281 (2016).

    Google Scholar article

  • Leave a Reply

    Your email address will not be published.